

National Aeronautics and Space Administration

Supersonic Retropropulsion Flight Test Concepts

8th International Planetary Probe Workshop Portsmouth, Virginia, 6-10 June 2011

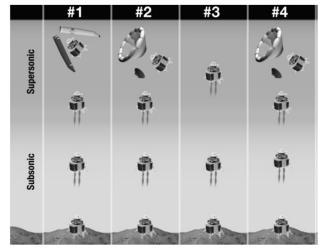
Ethan Post⁽¹⁾ Ashley Korzun⁽⁴⁾

Ian Dupzyk⁽²⁾ Rebekah Tanimoto⁽¹⁾

Artem Dyakonov⁽³⁾ Karl Edquist⁽³⁾

Exploration Technology Development & Demonstration Program EDL Technology Development Project

- (1) Jet Propulsion Laboratory, California Institute of Technology
- (2) NASA Ames Research Center
- (3) NASA Langley Research Center
- (4) Georgia Institute of Technology


Copyright 2011. All Rights Reserved.

Introduction

Supersonic Retropropulsion (SRP):

- Initiation of a retropropulsion phase while the vehicle is traveling at supersonic conditions
- Advanced entry, descent, and landing (EDL) decelerator technology
- Potential enabler for high-mass (e.g. human-scale)
 missions to the surface of Mars
- NASA's Exploration Technology Development and Demonstration (ETDD) Project is investing in the maturation of SRP technologies
 - Computational Fluid Dynamics (CFD) analysis
 - Wind tunnel testing
 - Flight test concept development and systems analysis
 - Roadmapping to mature SRP from ~ TRL 2 to TRL 6
- Flight test concepts have been defined for a proof-of-concept flight test

Reference: NASA EDL-SA Phase 1 Report, NASA TM 2010-216720, 2010.

Reference: NASA ETDD LaRC UPWT FY 10 SRP Test

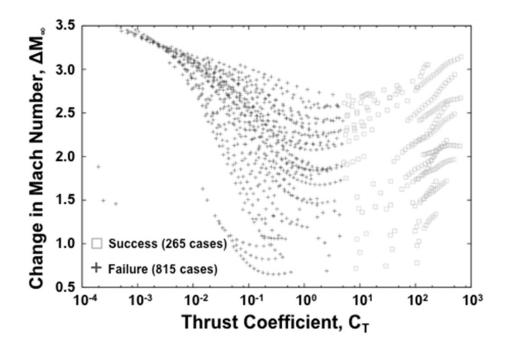
Objectives and Mission Requirements

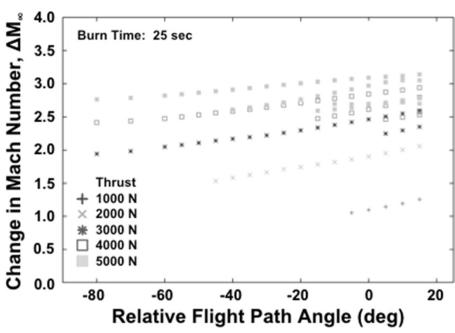
Objectives

- Demonstrate *proof-of-concept* for SRP in a flight environment
- Replicate relevant SRP physics using a minimally integrated system
- Collect data during flight within acceptable uncertainties to satisfy relevant TRL achievement criteria
- Demonstrate the ability to design, package, integrate, and test SRP subsystems
- Reduce the risks associated with increasingly complex follow-on flight tests

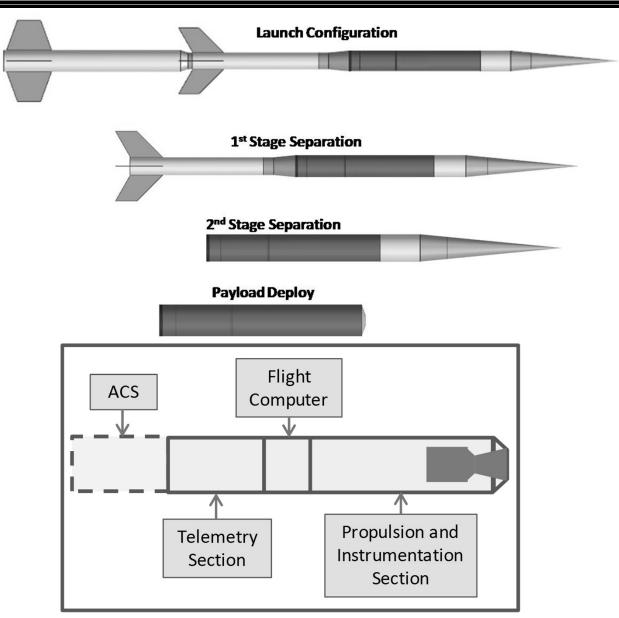
Mission Requirements Summary

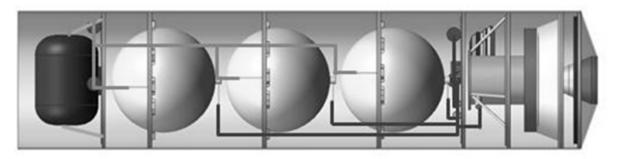
- Achievement of SRP ("hot", propulsive jet flow against a supersonic freestream)
- Ballistic and stable flight throughout entire mission trajectory
- · Utilization of existing components for launch system and test article
- Collection and analysis of data required for post-flight reconstruction, including:
 - Atmospheric characterization
 - 6-DOF vehicle state
 - Propulsion system performance and state
 - In-situ surface pressure and temperature

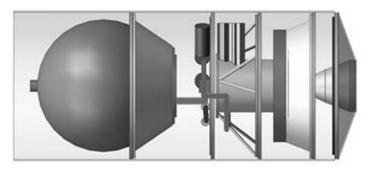

Test Phase Requirements


Duration	> 15 sec		
$M_{\scriptscriptstyle \infty}$ at initiation	> 2.0		
C_T	> 5.0		

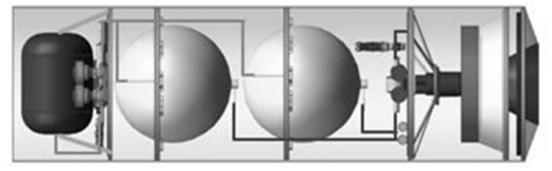
Initial Trade Study

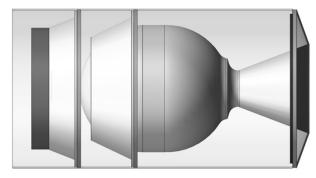

- Objective:
 - Determine if a typical sounding rocket trajectory is a viable option for FT1
- Constraints:
 - $-C_T > 5.0$
 - SRP initiation at Mach 3.5


Generalized Flight Test Article



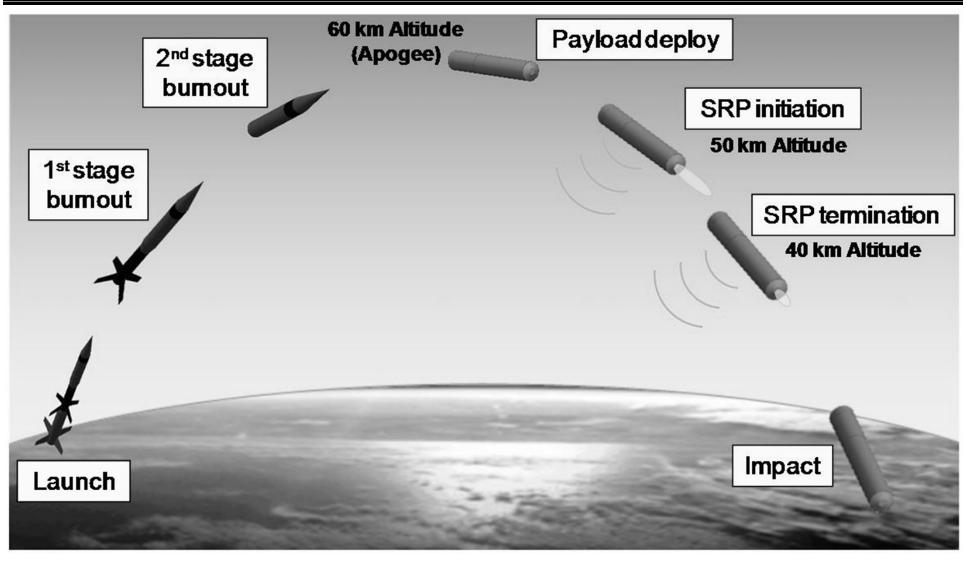
Concept Specific Packaging Study


Pressure-Fed Monopropellant


Blow-Down Monopropellant

STAR 15G SRM

Pressure-Fed Bipropellant



STAR 13B SRM

8th International Planetary Probe Workshop

Concept of Operations

Concept Specific Trade Study

Objective:

- Examine 5 FT 1 concepts using 3 different propellant types and explore the test space for each
- Trade Variables:
 - Propellant type
 - Packaging configuration
- Constraints:
 - $-C_{T} > 5.0$
 - Post-shock stagnation pressure less than the nozzle exit static pressure ($p_{02} < p_e$)
- Trajectory based on Terrier-Improved Orion launch vehicle with test initiation at:
 - 50 km altitude
 - Flight path angle = -30.3°
 - Velocity = 871 m/s

Trade Study Results

Concept	Propellant Type	Burn Time (sec)	Thrust (N), max/min	C _{T,min}	p _{02,max} / p _e (< 1.0)	$\Delta M_{\scriptscriptstyle \infty}$
1	N ₂ O ₄ / MMH	30.0	4003 / 4003	8.0	0.680	0.85
2	Hydrazine (Pressure- fed)	35.0	3100 / 3100	4.2	1.170	0.40
3	Hydrazine (Blow-down)	24.0	3100 / 800	2.0	0.950	0.02
4	Solid (STAR 13B)	15.6	9643 / 6007	75.0	0.104	1.40
5	Solid (STAR 15G)	36.4	12460 / 1744	80.0	0.144	2.10

Status and Forward Work

Gathering information to focus the effort

- Options
 - Launch platforms
 - Test vehicle architectures
 - Propulsion systems
- Performance criteria include C_T , range of Mach number
 - Small perceived benefit to test initiation at $M_{\infty} > 2$
 - Deceleration through the transonic regime viewed as strongly beneficial

View of test as proof-of-concept allows for de-emphasis on some performance differences between architectures, providing that:

- Test phase is initiated at supersonic conditions
- $-C_T > 5$ is maintained over majority of test phase

Evaluating important cost factors

- Sounding rocket costs less than Viking BLDT type platform
- Determine costs of actively controlled vs. passively stabilized test vehicle
- Compare hard costs and schedule costs of viable test vehicle engine options
 - Long lead time (years) and other availability issues with some motors
 - Opportunities to obtain left-over RCS engines from Space Shuttle
 - Opportunities to use industrial grade engines/tanks
 - Opportunities to partner with engine developers (LOX/CH₄)

Summary

- Sounding rocket identified as a viable platform for a proof of concept flight test of SRP
 - Identified a large range of trajectories capable of satisfying test phase requirements
- Five flight test concepts were considered
 - Demonstrated ability to package concepts on a sounding rocket
 - Additional cost information to be gathered for each concept
- Identified two Concept of Operations that satisfy test phase requirements
 - Trajectories and ConOps will be optimized following down-selection of flight test concepts

Acknowledgements

The authors would like to acknowledge the support of the Exploration Technology Development and Demonstration (ETDD) Program, managed at NASA-Glenn Research Center. The work documented herein was performed as part of ETDD's Entry, Descent, and Landing (EDL) Technology Development Project, which is managed at NASA-Langley Research Center and supported by NASA-Ames Research Center, NASA-Johnson Space Center, and the Jet Propulsion Laboratory.

We would also like to acknowledge Art Casillas, Jeremy Shidner, Bill Studak and Wallops Flight Facility for their analysis support and guidance.